Lower bounds for the trade-off between bias and mean absolute deviation
Alexis Derumigny and
Johannes Schmidt-Hieber
Statistics & Probability Letters, 2024, vol. 213, issue C
Abstract:
In nonparametric statistics, rate-optimal estimators typically balance bias and stochastic error. The recent work on overparametrization raises the question whether rate-optimal estimators exist that do not obey this trade-off. In this work we consider pointwise estimation in the Gaussian white noise model with regression function f in a class of β-Hölder smooth functions. Let ’worst-case’ refer to the supremum over all functions f in the Hölder class. It is shown that any estimator with worst-case bias ≲n−β/(2β+1)≕ψn must necessarily also have a worst-case mean absolute deviation that is lower bounded by ≳ψn. To derive the result, we establish abstract inequalities relating the change of expectation for two probability measures to the mean absolute deviation.
Keywords: Bias–variance trade-off; Mean absolute deviation; Minimax estimation; Nonparametric estimation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715224001512
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:213:y:2024:i:c:s0167715224001512
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2024.110182
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().