Bayes minimax estimator of the mean vector in an elliptically contoured distribution
Jie Jiang and
Lichun Wang
Statistics & Probability Letters, 2024, vol. 213, issue C
Abstract:
This paper investigates the Bayes estimator of the mean of an elliptically contoured distribution with unknown scale parameter under the quadratic loss. The Laplace transform and inverse Laplace transform of density facilitate us to obtain the expression of Bayes estimator. Then we prove the minimaxity of the Bayes estimator under certain conditions.
Keywords: Elliptically contoured distribution; Quadratic loss; Bayes estimator; Monotone likelihood ratio (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771522400155X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:213:y:2024:i:c:s016771522400155x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2024.110186
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().