Higher-order derivative of local times for space–time anisotropic Gaussian random fields
Zhenlong Chen and
Peng Xu
Statistics & Probability Letters, 2024, vol. 214, issue C
Abstract:
Let X={X(t),t∈RN} be a centered space–time anisotropic Gaussian random field values in Rd. Under some general conditions, the existence and smoothness (in the sense of Meyer-Watanabe) of the higher-order derivative of the local times of X(t) are studied. Moreover, we show that the derivatives of the local time of X(t) is jointly continuous on Rd×[0,1]N. The existing results on local times of fractional Brownian motion and other Gaussian random fields are extended to higher-order derivative of local times of more general space–time anisotropic Gaussian random fields.
Keywords: Space–time anisotropic; Derivatives; Local times; Smoothness; Jointly continuous (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715224001664
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:214:y:2024:i:c:s0167715224001664
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2024.110197
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().