EconPapers    
Economics at your fingertips  
 

Penalized composite likelihood estimation for hidden Markov models with unknown number of states

Yong Lin and Mian Huang

Statistics & Probability Letters, 2025, vol. 216, issue C

Abstract: Estimating hidden Markov models (HMMs) with unknown number of states is a challenging task. In this paper, we propose a new penalized composite likelihood approach for simultaneously estimating both the number of states and the parameters in an overfitted HMM. We prove the order selection consistency and asymptotic normality of the resultant estimator. Simulation studies and an application demonstrate the finite sample performance of the proposed method.

Keywords: Hidden Markov models; Order selection; Penalized composite likelihood; EM algorithm (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715224002165
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:216:y:2025:i:c:s0167715224002165

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

DOI: 10.1016/j.spl.2024.110247

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:216:y:2025:i:c:s0167715224002165