Block structure-based covariance tensor decomposition for group identification in matrix variables
Yu Chen,
Zongqing Hu,
Jie Hu and
Lei Shu
Statistics & Probability Letters, 2025, vol. 216, issue C
Abstract:
In research fields such as financial market analysis and social network research, understanding variable grouping relationships is fundamental to effective data analysis. This study describes the concept of the covariance tensor and emphasizes its significant role in analyzing matrix variable groupings through block structures. We propose a novel tensor decomposition-based method to exploit these structures for group identification. In addition, we explore the asymptotic properties of our estimators, focusing on the precision of the estimation of the number of groups and the asymptotic convergence of classification error rates to zero. We validate the effectiveness of the method through extensive numerical simulations across diverse data volumes and complexities, affirming its capability in variable grouping.
Keywords: Covariance tensor; Group identification; Matrix sequence analysis; Random matrix; Tensor decomposition (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715224002207
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:216:y:2025:i:c:s0167715224002207
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2024.110251
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().