Strict monotonicity of stochastic process extreme distributions
Lijian Yang
Statistics & Probability Letters, 2025, vol. 217, issue C
Abstract:
Strict monotonicity is proved for the distributions of extremes of processes consisting of series of bounded function with independent random coefficients, in particular for zero mean continuous Gaussian processes over compact metric space. These results have wide applications to global inference problems on unknown functions.
Keywords: Baire measure; Support of measure; Itô–Nisio theorem; Karhunen–Loève expansion; Mercer series (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016771522400261X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:217:y:2025:i:c:s016771522400261x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2024.110292
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().