On exact Bayesian credible sets for discrete parameters
Chaegeun Song and
Bing Li
Statistics & Probability Letters, 2025, vol. 218, issue C
Abstract:
We introduce a generalized Bayesian credible set that can achieve any preassigned credible level, addressing a limitation of the current credible sets. This is achieved by exploiting a connection between the highest posterior density set and the Neyman–Pearson lemma.
Keywords: Bayesian classification; Highest posterior density set; Neyman–Pearson lemma; Pattern recognition (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715224002645
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:218:y:2025:i:c:s0167715224002645
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2024.110295
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().