Minimum distance estimation in linear models with long-range dependent errors
Kanchan Mukherjee
Statistics & Probability Letters, 1994, vol. 21, issue 5, 347-355
Abstract:
This paper discusses the asymptotic representations of a class of L2-distance estimators based on weighted empirical processes in a multiple linear regression model when the errors are a function of stationary Gaussian random variables that are long-range dependent. Unlike the independent errors case, the limiting distributions of the suitably normalized estimators are not always normal. The limiting distributions depend heavily on the Hermite rank of a certain class of random variables. Some 'goodness of fit' tests for specified error distribution are also considered.
Keywords: Asymptotic; uniform; quadraticity; Long-range; dependence; Hermite; ranks; and; polynomials (search for similar items in EconPapers)
Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(94)00029-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:21:y:1994:i:5:p:347-355
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().