Estimation of the generalized Laplace distribution and its projection onto the circle
Marco Geraci
Statistics & Probability Letters, 2025, vol. 226, issue C
Abstract:
The generalized Laplace (GL) distribution, which falls in the larger family of generalized hyperbolic distributions, provides a versatile model to deal with a variety of applications thanks to its shape parameters. The elliptically symmetric GL admits a polar representation that can be used to yield a circular distribution, which we call projected GL distribution. The latter does not appear to have been considered yet in practical applications. In this article, we explore an easy-to-implement maximum likelihood estimation strategy based on Gaussian quadrature for the scale-mixture representation of the GL and its projection onto the circle. A simulation study is carried out to benchmark the fitting routine against alternative estimation methods to assess its feasibility, while the projected GL model is contrasted with other popular circular distributions. A real data example is given in Supplementary Materials.
Keywords: Asymmetry; Bimodality; Circular statistics; Generalized hyperbolic; Gaussian quadrature; Kurtosis (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715225001051
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:226:y:2025:i:c:s0167715225001051
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2025.110460
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().