A new and flexible class of sharp asymptotic time-uniform confidence sequences
Felix Gnettner and
Claudia Kirch
Statistics & Probability Letters, 2025, vol. 226, issue C
Abstract:
Confidence sequences are anytime-valid analogues of classical confidence intervals that do not suffer from multiplicity issues under optional continuation of the data collection. As in classical statistics, asymptotic confidence sequences are a nonparametric tool showing under which high-level assumptions asymptotic coverage is achieved so that they also give a certain robustness guarantee against distributional deviations. In this paper, we propose a new flexible class of confidence sequences yielding sharp asymptotic time-uniform confidence sequences under mild assumptions. Furthermore, we highlight the connection to corresponding sequential testing problems and detail the underlying limit theorem.
Keywords: Anytime-valid inference; Time-uniform confidence sequence; Nonparametric; Sequential testing (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167715225001075
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:226:y:2025:i:c:s0167715225001075
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
DOI: 10.1016/j.spl.2025.110462
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().