Rates of convergence for everywhere-positive Markov chains
J. R. Baxter and
Jeffrey S. Rosenthal
Statistics & Probability Letters, 1995, vol. 22, issue 4, 333-338
Abstract:
We generalize and simplify a result of Schervish and Carlin (1992) concerning the convergence of Markov chains to their stationary distributions. We prove geometric convergence for any Markov chain whose transition operator is compact and has everywhere-positive density functions (with respect to some reference measure). We also provide, without requiring compactness, a quantitative estimate of the convergence rate, given in terms of the stationary distribution.
Keywords: Compact; operator; Hilbert-Schmidt; condition; Gibbs; sampler; Markov; chain; Monte; Carlo; Geometric; convergence; Stationary; distribution (search for similar items in EconPapers)
Date: 1995
References: View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(94)00085-M
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:22:y:1995:i:4:p:333-338
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().