Estimation of quantile density function based on regression quantiles
Yadolah Dodge and
Jana Jurecková
Statistics & Probability Letters, 1995, vol. 23, issue 1, 73-78
Abstract:
We propose two estimators of quantile density function in linear regression model. The estimators, either of histogram or of kernel types, are based on regression quantiles and extend the Falk (1986) estimators based on order statistics from the location to the linear regression model. Unlike various other estimators proposed in the literature, our estimators are regression invariant and scale equivariant and hence applicable in estimation, testing, bounded-length confidence interval estimation and other inference based on L1-norm.
Date: 1995
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(94)00097-R
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:23:y:1995:i:1:p:73-78
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().