A strong law of large numbers for trimmed sums, with applications to generalized St. Petersburg games
Sándor Csörgo and
Gordon Simons
Statistics & Probability Letters, 1996, vol. 26, issue 1, 65-73
Abstract:
Extending a result of Einmahl, Haeusler and Mason (1988), a characterization of the almost sure asymptotic stability of lightly trimmed sums of upper order statistics is given when the right tail of the underlying distribution with positive support is surrounded by tails that are regularly varying with the same index. The result is motivated by applications to cumulative gains in a sequence of generalized St. Petersburg games in which a fixed number of the largest gains of the player may be withheld.
Keywords: Lightly; trimmed; sums; of; order; statistics; Almost; sure; asymptotic; stability; Generalized; St.; Petersburg; games (search for similar items in EconPapers)
Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(94)00253-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:26:y:1996:i:1:p:65-73
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().