The rates of convergence of Bayes estimators in change-point analysis
Andrew L. Rukhin
Statistics & Probability Letters, 1996, vol. 27, issue 4, 319-329
Abstract:
In the asymptotic setting of the change-point estimation problem the limiting behavior of Bayes procedures for the zero-one loss function is studied. The limiting distribution of the difference between the Bayes estimator and the parameter is derived. An explicit formula for the limit of the minimum Bayes risk for the geometric prior distribution is obtained from Spitzer's formula, and the rates of convergence in these limiting relations are determined.
Keywords: Bayes; risk; Change-point; problem; Convergence; rate; Geometric; distribution; Maximum; likelihood; estimator; Spitzer's; formula; Zero-one; loss; function (search for similar items in EconPapers)
Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(95)00093-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:27:y:1996:i:4:p:319-329
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().