On the grouped LSE under an errors-in-variables model
Michael G. Akritas
Statistics & Probability Letters, 1996, vol. 28, issue 2, 181-189
Abstract:
In the error-in-variables regression model, some or all of the covariates are observed with error. Standard approaches to this problem include maximum likelihood estimation, which requires some of the parameters to be known or be estimated from a separate experiment, moment estimation, which requires at least as many instrumental variables as there are variables observed with error, and the method of grouping initiated by Wald. The present method is kin to the grouping approach but here we allow the number of groups and the number of observations per group to tend to infinity. Without errors in variables the resulting estimator is asymptotically equivalent to the ordinary least-squares estimator. The present method is also related to the instrumental variables approach in the sense that information from an instrumental variable can be used in forming the groups; however, the present method is more generally applicable. When one of the covariates in the regression model is observed without error, the grouping can be done according to the values of this covariate and thus it requires no extraneous information
Date: 1996
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(95)00115-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:28:y:1996:i:2:p:181-189
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().