EconPapers    
Economics at your fingertips  
 

Linear least squares regression: a different view

Yannis G. Yatracos

Statistics & Probability Letters, 1996, vol. 29, issue 2, 143-148

Abstract: The main result of this paper is filling an existing gap between the theory of least squares regression and the solution of linear systems of equations. A linear least squares regression problem with p-parameters over n cases is converted, via non-orthogonal transformations, into a k-parameter regression problem through the origin on n - p + k cases, and p - k equations in diagonal form with p - k unknowns, 0

Keywords: Dimensionality; reduction; Least; squares; regression; Linear; systems; of; equations; Plots; for; regression (search for similar items in EconPapers)
Date: 1996
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(95)00167-0
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:29:y:1996:i:2:p:143-148

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:29:y:1996:i:2:p:143-148