EconPapers    
Economics at your fingertips  
 

Asymptotic normality of regression estimators with long memory errors

Liudas Giraitis (), Hira L. Koul and Donatas Surgailis

Statistics & Probability Letters, 1996, vol. 29, issue 4, 317-335

Abstract: This paper discusses asymptotic normality of certain classes of M- and R-estimators of the slope parameter vector in linear regression models with long memory moving average errors, extending recent results of Koul (1992) and Koul and Mukherjee (1993). Like in the case of the long memory Gaussian errors, it is observed that all these estimators are asymptotically equivalent to the least squares estimator, a fact that is in sharp contrast with the i.i.d. errors case.

Keywords: M-; R-estimators Appell polynomials Weighted empiricals (search for similar items in EconPapers)
Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(95)00188-3
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:29:y:1996:i:4:p:317-335

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:29:y:1996:i:4:p:317-335