EconPapers    
Economics at your fingertips  
 

A note on admissibility of the maximum likelihood estimator for a bounded normal mean

Manabu Iwasa and Yoshiya Moritani

Statistics & Probability Letters, 1997, vol. 32, issue 1, 99-105

Abstract: In estimating a bounded normal mean, it is known that the maximum likelihood estimator is inadmissible for squared error loss function. In this paper, we discuss the admissibility for other loss functions. We prove that the maximum likelihood estimator is admissible under absolute error loss.

Keywords: Absolute; error; loss; Admissibility; Bayes; estimator; Bounded; normal; mean; Integral; equation; Restricted; maximum; likelihood; estimator (search for similar items in EconPapers)
Date: 1997
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(96)00061-2
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:32:y:1997:i:1:p:99-105

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:32:y:1997:i:1:p:99-105