Low structure imprecise predictive inference for Bayes' problem
F. P. A. Coolen
Statistics & Probability Letters, 1998, vol. 36, issue 4, 349-357
Abstract:
This paper presents direct conditional imprecise probabilities for the number of successes in a finite number of future trials, given information about a finite number of past trials. A simple underlying process determining failures or successes is assumed, related to Bayes' postulate, and Hill's A(n) assumption is used. The results are related to the type of predictive inference known as low structure or black-box inference.
Keywords: A(n); Black-box; inference; Direct; conditional; probabilities; Fundamental; problem; of; practical; statistics; Fundamental; theorem; of; probability; Imprecise; probabilities; Low; stochastic; structure; Predictive; inference (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(97)00081-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:36:y:1998:i:4:p:349-357
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().