Finite sample performance of deconvolving density estimators
M. P. Wand
Statistics & Probability Letters, 1998, vol. 37, issue 2, 131-139
Abstract:
Recent studies have shown that the asymptotic performance of nonparametric curve estimators in the presence of measurement error will often be very much inferior to that when the observations are error-free. For example, deconvolution of Gaussian measurement error worsens the usual algebraic convergence rates of kernel estimators to very slow logarithmic rates. However, the slow convergence rates mean that very large sample sizes may be required for the asymptotics to take effect, so the finite sample properties of the estimator may not be very well described by the asymptotics. In this article finite sample calculations are performed for the important cases of Gaussian and Laplacian measurement error which provide insight into the feasibility of deconvolving density estimators for practical sample sizes. Our results indicate that for lower levels of measurement error deconvolving density estimators can perform well for reasonable sample sizes.
Keywords: Errors-in-variables; Kernel; estimator; Measurement; error; Mean; integrated; squared; error; Nonparametric; regression (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(97)00110-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:37:y:1998:i:2:p:131-139
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().