Asymptotically unbiased estimators for the extreme-value index
L. Peng
Statistics & Probability Letters, 1998, vol. 38, issue 2, 107-115
Abstract:
Estimators of the extreme-value index are based on a set of upper order statistics. When the number of upper-order statistics used in the estimation of the extreme-value index is small, the variance of the estimator will be large. On the other hand, the use of a large number of upper statistics will introduce a big bias. There are several papers concerning how to balance the variance component and the bias component. In this paper, we give an unbiased estimator even if one uses a large number of upper-order statistics.
Keywords: Extreme-value; index; Hill; estimator; Pickands'; estimator (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (17)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(97)00160-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:38:y:1998:i:2:p:107-115
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().