EconPapers    
Economics at your fingertips  
 

Convergence in the Hausdorff metric of estimators of irregular densities, using Fourier-Cesàro approximation

Arnoud C. M. van Rooij and Frits H. Ruymgaart

Statistics & Probability Letters, 1998, vol. 39, issue 2, 179-184

Abstract: The problem of estimating a density which is allowed to have discontinuities of the first kind is considered. The usual Fourier-type estimator is based on the Dirichlet or sine kernel and is not suitable to eliminate the Gibbs phenomenon. Fourier-Cesàro approximation yields the Fejér kernel which is the square of the sine function. Density estimators based on the Fejér kernel do control the Gibbs phenomenon. Integral metrics are not sufficiently sensitive to properly assess the performance of estimators of irregular signals. Therefore, we use the Hausdorff distance between the extended, closed, graphs of estimator and estimand, and derive an a.s. speed of convergence of this distance.

Keywords: Density; estimation; Irregular; densities; Gibbs; phenomenon; Fejer; kernel; Hausdorff; metric (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00062-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:39:y:1998:i:2:p:179-184

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:39:y:1998:i:2:p:179-184