Minimum distance estimation in linear regression with unknown error distributions
Hira L. Koul
Statistics & Probability Letters, 1985, vol. 3, issue 1, 1-8
Abstract:
This paper discusses minimum distance (m.d.) estimators of the paramter vector in the multiple linear regression model when the distributions of errors are unknown. These estimators are defined in terms of L2-distances involving certain weighted empirical processes. Their finite sample properties and asymptotic behavior under heteroscedastic, symmetric and asymmetric errors are discussed. Some robustness properties of these estimators are also studied.
Keywords: weighted; empiricals; qualitative; robustness; asymptotic; efficiency; heteroscedastic; gross; errors; influence; vectors (search for similar items in EconPapers)
Date: 1985
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(85)90002-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:3:y:1985:i:1:p:1-8
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().