A bayesian approach to inference for monotone failure rates
Thomas A. Mazzuchi and
Nozer D. Singpurwalla
Statistics & Probability Letters, 1985, vol. 3, issue 3, 135-141
Abstract:
In reliability theory, the notion of monotone failure rates plays a central role. When prior information indicates that such monotonicity is meaningful, it must be incorporated into the prior distribution whenever inference about the failure rates needs to be made. In this paper we show how this can be done in a straightforward and intuitively pleasing manner. The time interval is partitioned into subintervals of equal width and the number of failures and censoring in each interval is recorded. By defining a Dirichlet as the joint prior distribution for the forward or the backward differences of the conditional probabilities of survival in each interval, we find that the monotonicity is presenved in the posterior estimate of the failure rates. A posterior estimate of the survival function can also be obtained. We illustrate our method by applying it to some real life medical data.
Keywords: Bayesian; nonparametric; estimation; increasing; failure; rate; decreasing; failure; rate; Dirichlet; distribution (search for similar items in EconPapers)
Date: 1985
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(85)90051-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:3:y:1985:i:3:p:135-141
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().