EconPapers    
Economics at your fingertips  
 

On some new properties of the beta distribution

Wlodzimierz Krysicki

Statistics & Probability Letters, 1999, vol. 42, issue 2, 131-137

Abstract: The first aim of this paper is to show how to present a random variable with the beta distribution (of the first kind) as a finite or infinite product of independent random variable's (r.v.)'s Xk, where k[set membership, variant][1,2,...,n] or . Such a presentation of an r.v. with the gamma distribution in the form of an infinite product of r.v.'s was used by Lu and Richards [Lu, I-Li, Richards, D., 1993. Random discriminants. Ann. Statist. 21 (4) 1992-2000] to define the square of the Vandermonde determinant with random elements. Next, the convergence of the series [summation operator]1[infinity](1/2k)ln Xk to ln X with probability one has been proved. Finally, the Mieshalkin-Rogozin theorem [Mieshalkin, D., Rogozin, B.A., 1963. Ocenka razstajania miedu funkcjami raspredelenia po blizosti ich charakteristiczeskich funkcji i jeje primenenie k centralnoj predielnoj teoremie. (in Predelnyje teoremy verojatnostej. Taszkent. Akad Nauk Uzbec. SSR)], modified in this paper, has been applied to the beta distribution.

Keywords: Mellin; transform; Knar; formula; Marcinkiewicz-Zygmund; and; Loeve; theorems; Convergence; with; probability; one; Stochastic; equality; Infinite; convolutions; Mieshalkin-Rogozin; theorem (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00197-7
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:42:y:1999:i:2:p:131-137

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-06
Handle: RePEc:eee:stapro:v:42:y:1999:i:2:p:131-137