A paradox in least-squares estimation of linear regression models
Z. D. Bai and
Meihui Guo
Statistics & Probability Letters, 1999, vol. 42, issue 2, 167-174
Abstract:
This note considers a paradox arising in the least-squares estimation of linear regression models in which the error terms are assumed to be i.i.d. and possess finite rth moment, for r[set membership, variant][1,2). We give a concrete example to show that the least-squares estimator of the slope parameter is inconsistent when the intercept parameter of the model is given. However, surprisingly this estimator is consistent when the intercept parameter is intendedly assumed to be unknown and re-estimated simultaneously with the slope parameter.
Keywords: Consistency; Least-squares; estimate; rth; moment (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00205-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:42:y:1999:i:2:p:167-174
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().