A large-sample model selection criterion based on Kullback's symmetric divergence
Joseph E. Cavanaugh
Statistics & Probability Letters, 1999, vol. 42, issue 4, 333-343
Abstract:
The Akaike information criterion, AIC, is a widely known and extensively used tool for statistical model selection. AIC serves as an asymptotically unbiased estimator of a variant of Kullback's directed divergence between the true model and a fitted approximating model. The directed divergence is an asymmetric measure of separation between two statistical models, meaning that an alternate directed divergence may be obtained by reversing the roles of the two models in the definition of the measure. The sum of the two directed divergences is Kullback's symmetric divergence. Since the symmetric divergence combines the information in two related though distinct measures, it functions as a gauge of model disparity which is arguably more sensitive than either of its individual components. With this motivation, we propose a model selection criterion which serves as an asymptotically unbiased estimator of a variant of the symmetric divergence between the true model and a fitted approximating model. We examine the performance of the criterion relative to other well-known criteria in a simulation study.
Keywords: AIC; Akaike; information; criterion; I-divergence; J-divergence; Kullback-Leibler; information; Relative; entropy (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00200-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:42:y:1999:i:4:p:333-343
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().