On min-max majority and deepest points
D. Nolan
Statistics & Probability Letters, 1999, vol. 43, issue 4, 325-333
Abstract:
The asymptotic properties of a multivariate location estimator are obtained in this paper. The estimator examined is based on the notion of half-space depth, where the depth of a point is the minimum probability content of all half spaces containing the point. The location estimator of interest is the deepest point with respect to the empirical measure on half spaces. For angularly symmetric distributions, this estimator is consistent. For two dimensions, the exact limit distribution is derived, and the extension of the limit distribution results to higher dimensions is discussed.
Keywords: Robust; multivariate; location; estimation; Empirical; process; Min-max; majority; Gaussian; process; Half-space; depth (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00173-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:43:y:1999:i:4:p:325-333
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().