On minimax rates of convergence in image models under sequential design
Alexander Korostelev
Statistics & Probability Letters, 1999, vol. 43, issue 4, 369-375
Abstract:
A binary image model is studied with a Lipschitz edge function. The indicator function of the image is observed in random noise at n design points that can be chosen sequentially. The asymptotically minimax rate as n-->[infinity] is found in estimating the edge function, and an asymptotically optimal algorithm is described.
Keywords: Image; model; Minimax; rates; Asymptotics; Sequential; design (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00275-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:43:y:1999:i:4:p:369-375
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().