Asymptotic uniform linearity of some robust statistics under exponentially subordinated strongly dependent models
Shijie Chen and
Kanchan Mukherjee
Statistics & Probability Letters, 1999, vol. 44, issue 2, 137-146
Abstract:
In this paper, we discuss an asymptotic distributional theory of three broad classes of robust estimators of the regression parameter namely, L-, M- and R-estimators in a linear regression model when the errors are generated by an exponentially subordinated strongly dependent process. The results are obtained as a consequence of an asymptotic uniform Taylor-type expansion of certain randomly weighted empirical processes. The limiting distributions of the estimators are nonnormal and depend on the first nonzero index of the Laguerre polynomial expansion of a class of indicator functions of the error random variables.
Keywords: Laguerre; expansion; L-; M-; and; R-estimators; Regression; quantiles; Weighted; empirical; processes (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(98)00300-9
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:44:y:1999:i:2:p:137-146
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().