An optimal property of the exact multinomial test and the extended Fisher's exact test
Seung-ho Kang
Statistics & Probability Letters, 1999, vol. 44, issue 2, 201-207
Abstract:
In the goodness-of-fit test of parameters of the multinomial distribution we show that the exact multinomial test is asymptotically equivalent to the likelihood ratio test by using Stirling's formula. In an rxc contingency table, we show that the extended Fisher's exact test conditional on row and column margins for the test of independence is also asymptotically equivalent to the likelihood ratio test. From the Bahadur asymptotic optimality of the likelihood ratio test in both unconditional and conditional cases, we prove that the two exact tests are asymptotically optimal in the sense of Bahadur efficiency.
Keywords: Stirling's; formula; Bahadur; efficiency; Pearson's; chi-square; test; Conditional; inference (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00010-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:44:y:1999:i:2:p:201-207
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().