Kernel estimators of the ROC curve are better than empirical
Chris J. Lloyd and
Zhou Yong
Statistics & Probability Letters, 1999, vol. 44, issue 3, 221-228
Abstract:
The receiver operating characteristic (ROC) is a curve used to summarise the performance of a binary decision rule. It can be expressed in terms of the underlying distributions functions of the diagnostic measurement that underlies the rule. Lloyd (1998) has proposed estimating the ROC curve from kernel smoothing of these distribution functions and has presented asymptotic formulas for the bias and standard deviation of the resulting curve estimator. This paper compares the asymptotic accuracy of the kernel-based estimator with the fully empirical estimator. It is shown that the empirical estimator is deficient compared to the kernel estimator and that this deficiency is unbounded as sample size increases. A simulation study using both unimodal and bimodal distributions indicates that the gains in accuracy are significant for realistic sample sizes. Kernel-based ROC estimators can now be recommended.
Keywords: Relative; deficiency; Empirical; estimator; Kernel; estimator; ROC; curve (search for similar items in EconPapers)
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00012-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:44:y:1999:i:3:p:221-228
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().