On improving standard estimators via linear empirical Bayes methods
Francisco J. Samaniego and
Eric Vestrup
Statistics & Probability Letters, 1999, vol. 44, issue 3, 309-318
Abstract:
Suppose one wishes to estimate the parameter [theta] in a current experiment when one also has in hand data from k past experiments satisfying empirical Bayes sampling assumptions. It has long been known that, for a variety of models, empirical Bayes estimators tend to outperform, asymptotically, standard estimators based on the current experiment alone. Much less is known about the superiority of empirical Bayes estimators over standard estimators when k is fixed; what is known in that regard is largely the product of Monte Carlo studies. Conditions are given here under which certain linear empirical Bayes estimators are superior to the standard estimator for arbitrary k[greater-or-equal, slanted]1.
Keywords: Empirical; Bayes; Bayes; risk; Linear; decision; rules; Parametric; empirical; Bayes; problems (search for similar items in EconPapers)
Date: 1999
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00022-X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:44:y:1999:i:3:p:309-318
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().