EconPapers    
Economics at your fingertips  
 

Logspline density estimation for binned data

Ja-Yong Koo and Charles Kooperberg

Statistics & Probability Letters, 2000, vol. 46, issue 2, 133-147

Abstract: In this paper we consider logspline density estimation for binned data. Rates of convergence are established when the log-density function is assumed to be in a Besov space. An algorithm involving a procedure similar to maximum likelihood, stepwise knot addition, and stepwise knot deletion is proposed for the estimation of the density function based upon binned data. Numerical examples are used to show the finite-sample performance of inference based on the logspline density estimation.

Keywords: Besov; space; Binning; Knot; selection; MILE; Optimal; rate; of; convergence (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00097-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:46:y:2000:i:2:p:133-147

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:46:y:2000:i:2:p:133-147