EconPapers    
Economics at your fingertips  
 

A simulation-based goodness-of-fit test for survival data

Gang Li and Yanqing Sun

Statistics & Probability Letters, 2000, vol. 47, issue 4, 403-410

Abstract: To check the validity of a parametric model for survival data, a number of supremum-type tests have been proposed in the literature using Khmaladze's (1993, Ann. Statist. 18, 582-602) transformation of a test process. However, such a transformation is usually very complicated and lacks a clear interpretation. Information could also be lost through transformation. In this note, we propose a simulation-based supremum-type test directly from the original test process using an idea originally introduced by Lin et al. (1993, Biometrika 80, 557-572). The test is developed under the framework of Aalen's (1978, Ann. Statist. 6, 701-726) multiplicative intensity counting process model, and therefore applies to a number of survival models including those with very general forms of censoring and truncation. By comparing the observed test process with a set of simulated realizations of an approximating process, our method can be used as a graphical tool as well as a formal test for checking the adequacy of the assumed parametric model. We establish consistency of the resulting test under any fixed alternative. Its performance is investigated in a simulation study. Illustrations are given using some real data sets.

Keywords: Censoring; Kolmogorov-Smirnov; test; Monte; Carlo; method; Product-limit; estimator; Truncation; Weak; convergence (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(99)00186-8
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:47:y:2000:i:4:p:403-410

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:47:y:2000:i:4:p:403-410