Relationship between strictly collapsible and perfect contingency tables
Linda June Davis
Statistics & Probability Letters, 1986, vol. 4, issue 3, 119-122
Abstract:
Whittemore (1978) conjectured that an N-dimensional contingency table p is strictly collapsible over each factor with respect to the set of remaining factors if and only if p has a certain factorization. I prove this conjecture for N = 3 and show by counterexamples that it is false for N> 3.
Keywords: independence; interaction; marginalization (search for similar items in EconPapers)
Date: 1986
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/0167-7152(86)90073-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:4:y:1986:i:3:p:119-122
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().