EconPapers    
Economics at your fingertips  
 

Asymptotic normality of the kernel estimate of a probability density function under association

George G. Roussas

Statistics & Probability Letters, 2000, vol. 50, issue 1, 1-12

Abstract: The sole purpose of this paper is to establish asymptotic normality of the usual kernel estimate of the marginal probability density function of a strictly stationary sequence of associated random variables. In much of the discussions and derivations, the term association is used to include both positively and negatively associated random variables. The method of proof follows the familiar pattern for dependent situations of using large and small blocks. A result made available in the literature recently is instrumental in the derivations.

Keywords: Association; Positively; (negatively); associated; sequences; of; random; variables; Kernel; estimate; Asymptotic; normality (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00072-9
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:50:y:2000:i:1:p:1-12

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:50:y:2000:i:1:p:1-12