Finite sample performance of density estimators from unequally spaced data
José A. Vilar and
Juan M. Vilar
Statistics & Probability Letters, 2000, vol. 50, issue 1, 63-73
Abstract:
For broad classes of deterministic and random sampling schemes {[tau]k}, exact mean integrated squared error (MISE) expressions for the kernel estimator of the marginal density of a first-order continuous-time autoregressive process are derived. The obtained expressions show that the effect on MISE due to both the sampling scheme and the sampling rate is significant for finite samples. The results are also extended to a case where the irregular observations are generated from a mixture of first-order continuous-time processes.
Keywords: Nonparametric; density; estimation; Exact; mean; integrated; squared; error; First-order; continuous-time; autoregressive; process; Random; sampling; schemes (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00083-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:50:y:2000:i:1:p:63-73
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().