EconPapers    
Economics at your fingertips  
 

Testing lattice conditional independence models based on monotone missing data

Lang Wu and Michael D. Perlman

Statistics & Probability Letters, 2000, vol. 50, issue 2, 193-201

Abstract: Lattice conditional independence (LCI) models (Anderson and Perlman, 1991. Statist. Probab. Lett. 12, 465-486; 1993 Ann. Statist. 21, 1318-1358) can be applied to the analysis of missing data problems with non-monotone missing patterns. Closed-form maximum likelihood estimates can always be obtained under the LCI models naturally determined by the observed data patterns. In practice, it is important to test the appropriateness of LCI models. In the present paper, we derive explicit likelihood ratio tests for testing LCI models based on a monotone subset of the observed data.

Keywords: Likelihood; ratio; test; Multivariate; normal; data; Restricted; maximum; likelihood; estimates (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(00)00098-5
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:50:y:2000:i:2:p:193-201

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:50:y:2000:i:2:p:193-201