The wavelet identification for jump points of derivative in regression model
Yihui Luan and
Zhongjie Xie
Statistics & Probability Letters, 2001, vol. 53, issue 2, 167-180
Abstract:
A method is proposed to detect the number, locations and heights of jump points of the derivative in the regressive model [eta]i=f([xi]i)+[var epsilon]i, by checking if the empirical indirect wavelet coefficients of data have significantly large absolute values across fine scale levels. The consistency of the estimators is established and practical implementation is discussed. Some simulation examples are given to test our method.
Keywords: Wavelets; Scale; function; Derivative; Stationary; Jump (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00070-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:53:y:2001:i:2:p:167-180
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().