EconPapers    
Economics at your fingertips  
 

Extremal limit laws for a class of bivariate Poisson vectors

Stuart Coles and Francesco Pauli

Statistics & Probability Letters, 2001, vol. 54, issue 4, 373-379

Abstract: It is well known that conventional extreme value limit laws break down for the Poisson distribution: no normalization can be found to avoid degeneracy of the limit law of sample maxima. Anderson et al. (Ann. Appl. Probab. 7 (1997) 953) tackled this problem with a triangular array argument, letting both the sample size and Poisson mean grow at appropriate rates. This leads to a Gumbel limit law for sample maxima. In applications, this means that it may be appropriate to model extremes of Poisson processes using standard extreme value models and techniques. This paper extends the limit results to a class of bivariate Poisson distributions. Suitably normalized, and with a degree of dependence that is also permitted to grow at a suitable rate, we find that the limit distribution corresponds to the class of bivariate extreme value models that would have arisen, had the population been bivariate normal, cf. Hüsler and Reiss (Statist. Probab. Lett. 7 (1989) 283). This adds weight to the argument that, for practical applications involving Poisson variables, even in the presence of dependence, standard extreme value models can be applied, despite the degeneracy that arises by applying the usual asymptotic argument.

Keywords: Bivariate; Poisson; Extreme; value; distributions; Maxima; Triangular; arrays (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00102-X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:54:y:2001:i:4:p:373-379

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01

Access Statistics for this article

Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul

More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:stapro:v:54:y:2001:i:4:p:373-379