A note on the distribution of integrals of geometric Brownian motion
Rabi Bhattacharya,
Enrique Thomann and
Edward Waymire
Statistics & Probability Letters, 2001, vol. 55, issue 2, 187-192
Abstract:
The purpose of this note is to identify an interesting and surprising duality between the equations governing the probability distribution and expected value functional of the stochastic process defined by where {Zs: s[greater-or-equal, slanted]0} is a one-dimensional Brownian motion with drift coefficient [mu] and diffusion coefficient [sigma]2. In particular, both expected values of the form v(t,x):=Ef(x+At), f homogeneous, as well as the probability density a(t,y) dy:=P(At[set membership, variant]dy) are shown to be governed by a pair of linear parabolic partial differential equations. Although the equations are not the backward/forward adjoint pairs one would naturally have in the general theory of Markov processes, unifying and remarkably simple derivations of these equations are provided.
Keywords: Geometric; Brownian; motion; Asian; options; Turbulence (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00117-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:55:y:2001:i:2:p:187-192
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().