The Glivenko-Cantelli theorem based on data with randomly imputed missing values
Majid Mojirsheibani
Statistics & Probability Letters, 2001, vol. 55, issue 4, 385-396
Abstract:
Glivenko-Cantelli-type results will be derived for the performance of the empirical distribution function under imputation of the missing data in the univariate case, when there are no auxiliary covariates. According to these results, both random imputation and the adjusted random imputation produce reliable estimates of the unknown distribution function. They are reliable in the sense that the corresponding empirical distribution functions stay (w.p.1) "close" to F(t), uniformly over t. At the same time, it is also shown that if r(n)[less-than-or-equals, slant]n is the number of nonmissing observations, then one cannot improve on the performance of the empirical distribution function Fr(n) by generating artificial data, in order to increase the sample size from r(n) to n (using either one of the above two imputation procedures).
Keywords: Missing; data; Imputation; Glivenko-Cantelli; Nonasymptotic; bounds; Uniform; deviation; Symmetrization (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00142-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:55:y:2001:i:4:p:385-396
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().