The law of large numbers with exceptional sets
István Berkes
Statistics & Probability Letters, 2001, vol. 55, issue 4, 431-438
Abstract:
We investigate the law of large numbers with exceptional n-sets, i.e. when the theorem is required to hold only for almost all n, in the sense of a suitable measure on the integers. We prove the surprising result that in the presence of such exceptional sets, the weak and strong laws of large numbers become equivalent. We also give necessary and sufficient criteria for the validity of such laws.
Keywords: Law; of; large; numbers; Logarithmic; density; Almost; sure; central; limit; theorem (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00166-3
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:55:y:2001:i:4:p:431-438
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().