A note on various holding probabilities for random lazy random walks on finite groups
Martin Hildebrand
Statistics & Probability Letters, 2002, vol. 56, issue 2, 199-206
Abstract:
The author previously considered certain lazy random walks on arbitrary finite groups. Given a k-tuple (g1,...,gk) of elements of a finite group, one multiplies the previous position of the walk by gi[var epsilon] where i is uniform on {1,...,k} and [var epsilon] has a given distribution on {1,0,-1}. The previous work gave good bounds if P([var epsilon]=1)=P([var epsilon]=-1)=1/4 and P([var epsilon]=0)=1/2 or if P([var epsilon]=1)=P([var epsilon]=0)=1/2. The current paper develops some elementary comparison techniques which work for other distributions for [var epsilon] such as P([var epsilon]=1)=P([var epsilon]=0)=P([var epsilon]=-1)=1/3.
Date: 2002
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00188-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:56:y:2002:i:2:p:199-206
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().