Strong laws for Euclidean graphs with general edge weights
Raul Jimenez () and
J. E. Yukich
Statistics & Probability Letters, 2002, vol. 56, issue 3, 251-259
Abstract:
Consider a random Euclidean graph G with a vertex set consisting of i.i.d. random variables with a common density f. Let the edge lengths e, e[set membership, variant]G, be weighted by a function [phi]. We provide sufficient conditions on G and [phi] guaranteeing that the total edge length functional [summation operator]e[set membership, variant]G [phi](e) satisfies a strong law of large numbers. The limiting constant is shown to depend explicitly on f and [phi].
Keywords: Laws; of; large; numbers; Random; graphs; Nearest; neighbors; graph; Voronoi; and; Delaunay; graphs (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00175-4
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:56:y:2002:i:3:p:251-259
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().