An insight into linear calibration: univariate case
Jason J. Z. Liao
Statistics & Probability Letters, 2002, vol. 56, issue 3, 271-281
Abstract:
In the linear controlled calibration literature, the classical least-squares estimator and the inverse estimator are the two main estimators. These two have different advantages and disadvantages. Investigation of these differences leads us to propose a class of weighted least-squares estimators that includes the classical, the inverse, and the orthogonal-regression approaches as special cases. Instead of pre-choosing the weight, a method is proposed to choose the optimal weight. An example is used to demonstrate the advantages of the new approach.
Keywords: Classical; estimator; Inverse; estimator; Weighted; least-squares; Optimal; weight; Mean; squared; error; (MSE); Integrated; MSE; (IMSE) (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00190-0
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:56:y:2002:i:3:p:271-281
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().