On best choice problems having similar solutions
Zdzislaw Porosinski
Statistics & Probability Letters, 2002, vol. 56, issue 3, 321-327
Abstract:
The purpose of the paper is to point out that best choice problems with different information structure may have similar solutions. A full-information best choice problem with a random number of objects having uniform distribution is considered. An optimal stopping rule, determined by decreasing sequence of levels, is found. Asymptotic behaviour of both an optimal stopping rule and a winning probability is examined in detail. Both the sequence of optimal levels determining optimal strategies and asymptotic winning probabilities are the same in the considered problem as well as in a best choice problem with partial information considered by Petruccelli (Ann. Statist. 8 (1980) 1171-1174).
Keywords: Best; choice; problem; Optimal; stopping (search for similar items in EconPapers)
Date: 2002
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(01)00201-2
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:56:y:2002:i:3:p:321-327
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().