Uniqueness of uniform random colorings of regular trees
Johan Jonasson
Statistics & Probability Letters, 2002, vol. 57, issue 3, 243-248
Abstract:
A q-coloring of an infinite graph G is a homomorphism from G to the complete graph Kq on q vertices. A probability measure on the set of q-colorings of G is said to be a Gibbs measure for q-colorings of G for uniform activities if for every finite portion U of G and almost every q-coloring of G[-45 degree rule]U, the conditional distribution on the coloring of U given the coloring of G[-45 degree rule]U is uniform (on the set of colorings that are admissable when the coloring of the boundary of U is taken into account). In Brightwell and Winkler (2000), one studies q-colorings of the r+1-regular tree and among other things it is shown that if q[less-than-or-equals, slant]r+1 there are multiple such Gibbs measures, whereas when r is large enough and q[greater-or-equal, slanted]1.6296r there is a unique Gibbs measure. In this paper the gap is filled in: we show that for r[greater-or-equal, slanted]1000 one has uniqueness as soon as q[greater-or-equal, slanted]r+2. Computer calculations verify that the result is also true for 3[less-than-or-equals, slant]r
Date: 2002
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00054-8
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:57:y:2002:i:3:p:243-248
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().