Multivariate non-parametric tests of trend when the data are incomplete
Mayer Alvo and
Jincheol Park
Statistics & Probability Letters, 2002, vol. 57, issue 3, 281-290
Abstract:
In environmental and medical studies, multivariate data are often recorded over regular time intervals and examined for monotone increasing or decreasing trends in one or more of the variables. Dietz and Killeen (J. Amer. Statist. Assoc. 76 (1981) 169) proposed a non-parametric test based on the Kendall measure of correlation and applied it to medical data. In this paper, we are concerned with situations when the data are partially incomplete. New test statistics based on the Spearman and Kendall correlation coefficients are proposed which are shown to be asymptotically chi squared. Results from a limited simulation study reveal that in most situations, the proposed test statistic performs better than its counterpart which deletes the missing data.
Keywords: Rankings; Spearman; Kendall; Missing; observations; Multivariate; data (search for similar items in EconPapers)
Date: 2002
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-7152(02)00062-7
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:stapro:v:57:y:2002:i:3:p:281-290
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
https://shop.elsevie ... _01_ooc_1&version=01
Access Statistics for this article
Statistics & Probability Letters is currently edited by Somnath Datta and Hira L. Koul
More articles in Statistics & Probability Letters from Elsevier
Bibliographic data for series maintained by Catherine Liu ().